Displacing fishmeal with protein derived from stranded methane

  • 1.

    Mbow, C. et al. in Special Report on Climate Change and Land (eds Shukla, P. R. et al.) 437–550 (IPCC, 2019).

  • 2.

    GLOBEFISH Highlights January 2020 Issue, with Jan.–Sep. 2019 Statistics (FAO, 2020).

  • 3.

    Edwards, P., Zhang, W., Belton, B. & Little, D. C. Misunderstandings, myths and mantras in aquaculture: its contribution to world food supplies has been systematically over reported. Mar. Policy 106, 103547 (2019).

    Article 

    Google Scholar 

  • 4.

    Willett, W. et al. Food in the Anthropocene: the EAT-Lancet commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article 

    Google Scholar 

  • 5.

    Shah, M. R. et al. Microalgae in aquafeeds for a sustainable aquaculture industry. J. Appl. Phycol. 30, 197–213 (2018).

    Article 

    Google Scholar 

  • 6.

    Naylor, R. L. et al. A 20-year retrospective review of global aquaculture. Nature 591, 551–563 (2021).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Ortuño Crespo, G. & Dunn, D. C. A review of the impacts of fisheries on open-ocean ecosystems. ICES J. Mar. Sci. 74, 2283–2297 (2017).

    Article 

    Google Scholar 

  • 8.

    Malcorps, W. et al. The sustainability conundrum of fishmeal substitution by plant ingredients in shrimp feeds. Sustainability 11, 1212 (2019).

    Article 

    Google Scholar 

  • 9.

    Boucher, O., Friedlingstein, P., Collins, B. & Shine, K. P. The indirect global warming potential and global temperature change potential due to methane oxidation. Environ. Res. Lett. 4, 044007 (2009).

    Article 

    Google Scholar 

  • 10.

    Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018 Technical Report No. 430-R-20-002 (US Environmental Protection Agency, 2020).

  • 11.

    Clomburg, J. M., Crumbley, A. M. & Gonzalez, R. Industrial biomanufacturing: the future of chemical production. Science 355, eaag0804 (2017).

    Article 

    Google Scholar 

  • 12.

    Øverland, M., Tauson, A.-H., Shearer, K. & Skrede, A. Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals. Arch. Anim. Nutr. 64, 171–189 (2010).

    Article 

    Google Scholar 

  • 13.

    El Abbadi, S. H. & Criddle, C. S. Engineering the dark food chain. Environ. Sci. Technol. 53, 2273–2287 (2019).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Our products. Calysta http://www.feedkind.com/products/ (2021).

  • 15.

    Protein. Unibio https://www.unibio.dk/end-product/protein/ (2021).

  • 16.

    Levett, I. et al. Techno-economic assessment of poly-3-hydroxybutyrate (PHB) production from methane—the case for thermophilic bioprocessing. J. Environ. Chem. Eng. 4, 3724–3733 (2016).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Pikaar, I. et al. Decoupling livestock from land use through industrial feed production pathways. Environ. Sci. Technol. 52, 7351–7359 (2018).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Matassa, S. et al. Upcycling of biowaste carbon and nutrients in line with consumer confidence: the ‘full gas’ route to single cell protein. Green Chem. 22, 4912–4929 (2020).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Verbeeck, K., De Vrieze, J., Pikaar, I., Verstraete, W. & Rabaey, K. Assessing the potential for up-cycling recovered resources from anaerobic digestion through microbial protein production. Microb. Biotechnol. https://doi.org/10.1111/1751-7915.13600 (2020).

  • 20.

    Landfill Gas Energy Project Data and Landfill Technical Data (Environmental Protection Agency, 2020).

  • 21.

    Facilities Level Information on GreenHouse Gases Tool (Environmental Protection Agency, 2019).

  • 22.

    Global Gas Flaring Observed from Space (Earth Observation Group, 2019).

  • 23.

    Clean Watersheds Needs Survey (CWNS) 2004 Report and Data (Environmental Protection Agency, 2004).

  • 24.

    Clean Watersheds Needs Survey (CWNS) 2008 Report and Data (Environmental Protection Agency, 2008).

  • 25.

    Clean Watersheds Needs Survey (CWNS) 2012 Report and Data (Environmental Protection Agency, 2012).

  • 26.

    Yanwen, S., Linville, J. L., Meltem, U.-D., Mintz, M. M. & Snyder, S. W. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: challenges and opportunities towards energy-neutral WWTPs. Renew. Sustain. Energy Rev. 50, 346–362 (2015).

    Article 

    Google Scholar 

  • 27.

    Cho, J. H. & Kim, I. H. Fish meal—nutritive value. J. Anim. Physiol. Anim. Nutr. 95, 685–692 (2011).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Humbird, D., Davis, R. & McMillan, J. D. Aeration costs in stirred-tank and bubble column bioreactors. Biochem. Eng. J. 127, 161–166 (2017).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Electric Power Monthly (US Energy Information Administration, 2021).

  • 30.

    Petersen, L. A. H., John, V., Jørgensen, S. B. & Gernaey, K. V. Mixing and mass transfer in a pilot scale U-loop bioreactor. Biotechnol. Bioeng. 114, 344–354 (2017).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Criddle, C. S., Billington, S. L. & Frank, C. W. Renewable Bioplastics and Biocomposites from Biogas Methane and Waste-Derived Feedstock: Development of Enabling Technology, Life Cycle Assessment, and Analysis of Costs Technical Report No. DRRR-2014-1502 (California Department of Resources Recycling and Recovery, 2014).

  • 32.

    Cusworth, D. H. et al. Using remote sensing to detect, validate, and quantify methane emissions from California solid waste operations. Environ. Res. Lett. 15, 054012 (2020).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Siegert, M. et al. Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis. ACS Sustain. Chem. Eng. 2, 910–917 (2014).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Kim, A. H. et al. More than a fertilizer: wastewater-derived struvite as a high value, sustainable fire retardant. Green Chem. 23, 4510–4523 (2021).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Commodity Prices—Annual Prices Technical Report (World Bank, 2021).

  • 36.

    Jannathulla, R. et al. Fishmeal availability in the scenarios of climate change: inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquac. Res. 50, 3493–3506 (2019).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Nathan, P., Klinger, D. H., Sims, N. A., Janice-Renee, Y. & Kittinger, J. N. Nutritional attributes, substitutability, scalability, and environmental intensity of an illustrative subset of current and future protein sources for aquaculture feeds: joint consideration of potential synergies and trade-offs. Environ. Sci. Technol. 52, 5532–5544 (2018).

    Article 

    Google Scholar 

  • 38.

    Cumberlege, T., Blenkinsopp, T. & Clark, J. Assessment of Environmental Footprint of FeedKind Protein Technical Report (Carbon Trust, 2016).

  • 39.

    Veiga, P., Mendes, M., Martin, D. & Lee-Harwood, B. Reduction Fisheries: SFP Fisheries Sustainability Overview 2019 Technical Report (Sustainable Fisheries Partnership, 2019).

  • 40.

    Zhang, W. et al. Fishing for feed in China: facts, impacts and implications. Fish Fish. 21, 47–62 (2020).

    Article 

    Google Scholar 

  • 41.

    Kok, B. et al. Fish as feed: using economic allocation to quantify the Fish In : Fish Out ratio of major fed aquaculture species. Aquaculture 528, 735474 (2020).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Klinger, D. & Naylor, R. Searching for solutions in aquaculture: charting a sustainable course. Annu. Rev. Environ. Resour. 37, 247–276 (2012).

    Article 

    Google Scholar 

  • 43.

    van der Ha, D., Bundervoet, B., Verstraete, W. & Boon, N. A sustainable, carbon neutral methane oxidation by a partnership of methane oxidizing communities and microalgae. Water Res. 45, 2845–2854 (2011).

    Article 

    Google Scholar 

  • 44.

    Rasouli, Z., Valverde-Pérez, B., D’Este, M., De Francisci, D. & Angelidaki, I. Nutrient recovery from industrial wastewater as single cell protein by a co-culture of green microalgae and methanotrophs. Biochem. Eng. J. 134, 129–135 (2018).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Gingerich, D. B. & Mauter, M. S. Air emission reduction benefits of biogas electricity generation at municipal wastewater treatment plants. Environ. Sci. Technol. 52, 1633–1643 (2018).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Parker, N., Williams, R., Dominguez-Faus, R. & Scheitrum, D. Renewable natural gas in California: an assessment of the technical and economic potential. Energy Policy 111, 235–245 (2017).

    Article 

    Google Scholar 

  • 47.

    Rittmann, B. E. & McCarty, P. L. Environmental Biotechnology: Principles and Applications 2nd edn (McGraw-Hill Education, 2020).

  • 48.

    Vo, T. T. Q., Wall, D. M., Ring, D., Rajendran, K. & Murphy, J. D. Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation. Appl. Energy 212, 1191–1202 (2018).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Wendlandt, K.-D., Jechorek, M., Helm, J. & Stottmeister, U. Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J. Biotechnol. 86, 127–133 (2001).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Garrett, D. E. Chemical Engineering Economics (Van Nostrand Reinhold, 1989).

  • 51.

    CPI for All Urban Consumers (CPI-U) Technical Report (US Bureau of Labor Statistics, 2020).

  • 52.

    Weighted Average Cost of Capital (WACC): Explanation and Examples Technical Report (New Constructs, 2016).

  • 53.

    Retail Sales of Electricity to Ultimate Customers (Annual) Technical Report (US Energy Information Administration, 2020).

  • 54.

    Yang, S. et al. Global molecular analyses of methane metabolism in methanotrophic Alphaproteobacterium, Methylosinus trichosporium OB3b. Part II. Metabolomics and 13C-labeling study. Front. Microbiol. 4, 70 (2013).

    Google Scholar 

  • 55.

    Czyrnek-Delêtre, M. M., Ahern, E. P. & Murphy, J. D. Is small-scale upgrading of landfill gas to biomethane for use as a cellulosic transport biofuel economically viable? Biofuels Bioprod. Biorefin. 10, 139–149 (2016).

    Article 

    Google Scholar 

  • 56.

    Tansel, B. & Surita, S. C. Managing siloxanes in biogas-to-energy facilities: economic comparison of pre- vs post-combustion practices. Waste Manage. 96, 121–127 (2019).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Aguilera, P. G. & Gutiérrez Ortiz, F. J. Techno-economic assessment of biogas plant upgrading by adsorption of hydrogen sulfide on treated sewage-sludge. Energy Convers. Manage. 126, 411–420 (2016).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Pipatmanomai, S., Kaewluan, S. & Vitidsant, T. Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm. Appl. Energy 86, 669–674 (2009).

    CAS 
    Article 

    Google Scholar 

  • 59.

    United States Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) (US Energy Information Administration, 2020).

  • 60.

    Pieja, A. J., Rostkowski, K. H. & Criddle, C. S. Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic proteobacteria. Microb. Ecol. 62, 564–573 (2011).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Noreddine, G., Missimer, T. M. & Amy, G. L. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309, 197–207 (2013).

    Article 

    Google Scholar 

  • 62.

    U.S. Refinery Utilization and Capacity (US Energy Information Administration, 2019).

  • 63.

    Jorge Luis, M., Dubrawski, K. L., El Abbadi, S. H., Choo, K.-H. & Criddle, C. S. Membrane and fluid contactors for safe and efficient methane delivery in methanotrophic bioreactors. J. Environ. Eng. 146, 03120006 (2020).

    Article 

    Google Scholar 

  • 64.

    Jinghua, X. & VanBriesen, J. M. Expanded thermodynamic true yield prediction model: adjustments and limitations. Biodegradation 19, 99–127 (2008).

    Article 

    Google Scholar 

  • Comments are closed.